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These notes are about two examples of the Atiyah-Singer index theorem. In the first one we

look at the n-sphere (for an even n) with its unique spin structure and the second one treats the

Clifford bundle
∧∗

T ∗S2 ⊗ C over S2 equipped with the Euler grading. For the second example

we need an extension of the originally Atiyah-Singer index theorem for general graded Clifford

bundles. First the classical statement from Atiyah and Singer [see Roe99, p.164]:

Theorem 1 (Atiyah-Singer). Let M be a compact, even-dimensional oriented manifold and let S

be a canonically graded Clifford bundle over it with associated Dirac operator D. Then

Ind(D) =

∫
M

Â(TM) ∧ ch(S/∆) (1)

holds. In particular, if M is a spin manifold and S = ∆ is the spin bundle, the index of the Dirac

operator on ∆ is equal to the Â-genus of the manifold M.

A Clifford bundle S equipped with a general grading (with grading operator ε) splits into a

direct sum of the canonical and anticanonically graded Clifford subbundles S = Sc ⊕ Sa. Let ε0

be the grading operator of the canonical grading on S, then ε0 and −ε0 are the grading operators

on Sc and Sa. Explicitly this means:

ε(sc) = ε0(sc) and ε(sa) = −ε0(sa) ∀sc ∈ Sc, sa ∈ Sa (2)

The fact, that we can always find such a splitting [Lemma 11.3 Roe99], gives us the extended

Atiyah-Singer index theorem for a general grading on S:

Corollary 2 (Atiyah-Singer index theorem for a general grading). The index of the associated

Dirac operator D of a graded Clifford bundle S over a compact, even-dimensional oriented manifold

M satisfies:

Ind(D) =

∫
M

Â(TM) ∧ chs(S/∆)

Here the relative super Chern character is defined as chs(S/∆) =: ch(Sc/∆)− ch(Sa/∆) with the

splitting S = Sc ⊕ Sa into the canonical and anticanonically graded parts of S.

Proof. Lets take any notions of the corollary and the paragraph before. Splitting all vector bundles

into the even and odd parts gives for the Clifford bundle S

S = S+
c ⊕ S−c ⊕ S+

a ⊕ S−a = S+ ⊕ S−.
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A straightforward calculation gives S+
c ⊕S−a = S+ and S−c ⊕S+

a = S−. For example is S+
c ⊕S−a ⊂

S+:

Pick an arbitrary sc + sa ∈ S+
c ⊕ S−a and calculate under use of equation (2)

ε(sc + sa) = ε(sc) + ε(sa) = ε0(sc)− ε0(sa) = sc + sa. It follows sc + sa ∈ S+.

Now we use the analog notation for the restricted Dirac operators and the corollary follows with

the definition of the index and the originally Atiyah-Singer index theorem:

Ind(D) = dim(ker(D+))− dim(ker(D−))

= dim(ker(D+
c )) + dim(ker(D−a ))− dim(ker(D−c ))− dim(ker(D+

a ))

= Ind(Dc)− Ind(Da)

=

∫
M

Â(TM) ∧ ch(Sc/∆)−
∫
M

Â(TM) ∧ ch(Sa/∆)

=

∫
M

Â(TM) ∧ chs(S/∆)

First example: n-Sphere with spin structure

As manifold we choose for an even integer n the n-sphere denoted as Sn. This is a compact, even-

dimensional oriented manifold which carries a unique spin structure∗. The induced spin bundle ∆

forms a Clifford bundle [see Roe99, p.63] and the requirements of the Atiyah-Singer index theorem

are fulfilled. It states for the associated Dirac operator D:

Ind(D) =

∫
Sn
Â(TSn) (3)

In the following we want to calculate both sides separately and verify the index theorem. For the

calculation of the index of the Dirac operator the following lemma will be helpful:

Lemma 3. The associated Dirac operator D of a compact spin manifold M with positive scalar

curvature has no homogeneous spinors. This means explicitly that the equation Dφ = 0 has just

the trivial solution.

Proof. The spin manifold M induces the spin bundle ∆ which carries the structure of a Clifford

bundle. D is the associated Dirac operator to this Clifford bundle. The twisting curvature of the

spin bundle ∆ is zero by Proposition 4.21 and together with Proposition 3.18 [see Roe99, p.64

and 48] the square of the Dirac operator takes the form

D2 = ∇∗∇+
1

4
κ (4)

with scalar curvature κ. Let φ be a smooth section of ∆ which satisfies Dφ = 0. Integrating over

the manifold M (here we need the compactness of M), using that D is self-adjoin and that ∇∗ is

the formal adjoin of ∇ gives us

0 =

∫
M

〈Dφ,Dφ〉dvolg =

∫
M

〈D2φ, φ〉dvolg
eq.(4)

=

∫
M

〈∇∗∇φ, φ〉︸ ︷︷ ︸
=‖∇φ‖2

dvolg +
1

4

∫
M

κ‖φ‖2dvolg

∗For n > 2 Sn is spin and it is 2-connected because all homotopy groups πk(S
n) vanishes for k < n and with

Proposition 4.17 [see Roe99, p.63] the existence of a unique spin-structure follows. In the case n = 2 there is also
a unique spin structure [see DT86].
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and it follows φ ≡ 0 because of the positive scalar curvature.

Let’s go back to equation (3) and calculate both sides:

Left side of eq. (3): The spin bundle ∆ is canonically graded and splits into the positive and

negative half-spin representations ∆+ ⊕ ∆− with Dirac operator D =
(

0 D−

D+ 0

)
. The n-

sphere has positive scalar curvature so that we can apply the previous Lemma 3, which

gives us ker(D±) = 0. It follows by the definition of the index:

Ind(D) = dim(ker(D+))− dim(ker(D−)) = 0

Right side of eq. (3): The Â-genus of the real vector bundle TSn is defined over the Pontrjagin

class

Â(TSn) = exp

 ∧
log(f)

(log(p(TSn))


with f(x) =

√
x/2

sinh(
√
x/2)

[see Bär06, p.20]. To see that the Pontrjagin genus of the n-sphere

is equal to one we take the normal bundle ε of Sn, which is a trivial line bundle and satisfies

TSn ⊕ ε ∼= Rn+1|Sn . From the standard properties of the Pontrjagin genus [Satz 3.2 Bär06]

we can conclude:

p(TSn) = p(TSn) · p(ε) = p(TRn+1) = 1 ∈ H4∗(M,R) (5)

It follows Â(TSn) = 1 and finally
∫
Sn
Â(TSn) = 0 because the integral over a differential

form with lower degree than n is zero.

Both sides of equation (3) are zero and the Atiyah-Singer index theorem is verified for our example.

Second example:
∧∗T∗S2 ⊗ C over S2 equipped with the Euler grading

Let
∧∗

T ∗S2 ⊗ C be the Clifford bundle over S2 [Example 3.19 Roe99] equipped with the Euler

grading [Example 11.8 Roe99]. We want to consider the generalization of the Atiyah-Singer index

theorem (Corollary 2). The following theorem is an application of this statement. It identifies the

Euler characteristic χ(M) with the Euler class and is known as the Chern-Gauss-Bonnet theorem

[Question 13.20 Roe99]:

Theorem 4. (Chern-Gauss-Bonnet theorem) The Clifford bundle S =
∧∗

T ∗M ⊗C over a com-

pact, even-dimensional oriented manifold M, equipped with the Euler grading, satisfies:

χ(M) :=
∑
j

(−1)jdim(Hj(M,R)) =

∫
M

e(TM)

Remark 5. (1) The vector bundle S =
∧∗

T ∗M ⊗C inherits the structure of a Clifford bundle

by using the natural isomorphism to Cl(TM) ⊗ C (e1 ∧ ... ∧ en 7→ e1 · ... · en for e1, ..., en

orthonormal and identifying T ∗M with TM via the metric). Then we define the module
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action such that the following diagram commutes:

(Cl(TM)⊗ C)×
(∧∗

T ∗M ⊗ C
) module action //

∼
��

∧∗
T ∗M ⊗ C

∼
��

(Cl(TM)⊗ C)× (Cl(TM)⊗ C)
Clifford multipl. // Cl(TM)⊗ C

In Example 3.19 [see Roe99, p.49] it is proved, that this gives us really the structure of a

Clifford bundle with Dirac operator D = d+ d∗.

(2) In the previous theorem we take the definition of the Euler characteristic used in algebraic

topology. It corresponds to the geometric definition for a manifold via a triangulation. If M

is a surface (two dimensional manifold) we have:

χ(M) :=
∑
j

(−1)jdim(Hj(M,R)) = V − E + F (6)

Here is V the number of vertexes, E the number of edges and F the number of surfaces of a

triangulation.

Proof. (Chern-Gauss-Bonnet theorem) The idea of the proof is to start with the extended version

of the Atiyah-Singer index theorem (Corollary 2) and consider both sides of the statement with

the expressions in the Chern-Gauss-Bonnet theorem:

(1) Ind(D) =
∑
j(−1)jdim(Hj(M,R))

(2)
∫
M
Â(TM) ∧ chs(S/∆) =

∫
M
e(TM)

We will start with the index of the Dirac operator. The grading operator ε of the Euler grading

is defined for an element of the form w⊗ z ∈ ∧jT ∗M ⊗C via ε(w ⊗ z) := (−1)jw ⊗ z. This leads

to the following splitting of our Clifford bundle:

S =
⊕
j

∧j
T ∗M ⊗ C︸ ︷︷ ︸

:=Sj

= (
∧even

T ∗M ⊗ C)︸ ︷︷ ︸
:=S+

⊕(∧odd
T ∗M ⊗ C

)
︸ ︷︷ ︸

:=S−

Using the map d⊗ id between the Γ(Sj) this leads to a Dirac complex in the sense of Definition

6.1 [see Roe99, p.87]. Under use of the Hodge theorem [Theorem 6.2 Roe99] we can calculate the

kernel of the Dirac operator restricted to Γ(Sj):

ker
(
D|Γ(Sj)

)
= {s ∈ Γ(Sj)| s is harmonic︸ ︷︷ ︸

⇔Ds=0

}
Hodges theorem∼= Hj(S; d⊗ id) ∼= Hj(M ;R) (7)

After this preliminary work, we can calculate the index of the Dirac operator:

Ind(D) = dim(ker(D+))− dim(ker(D−))

=
∑
j

dim
(

ker
(
D|Γ(S2j)

)︸ ︷︷ ︸
∼=H2j(M ;R)

)
−
∑
j

dim
(

ker
(
D|Γ(S2j+1)

)︸ ︷︷ ︸
∼=H2j+1(M ;R)

)
eq.(7)

=
∑
j

(−1)j dim(Hj(M ;R))

(8)
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For the explicit calculation of the integral over the Â-genus and the super Chern character we

must know precisely how the canonical and anticanonically graded parts of S looks like.

Claim:Sc ∼= ∆⊗∆+ and Sa ∼= ∆⊗∆− (9)

Proof: Recall that we have the two grading operators ε = (−1)j (acting like this on elements

of
∧j

T ∗M⊗C) and ε0 = in/2ω (where n is the dimension of the manifold M and ω = e1 ·...·en
is the volume element in Cl(TM)) on S, the natural isomorphism S ∼= Cl(TM)⊗C and the

isomorphism (the spin representation) κ : Cl(TM) ⊗ C → End(∆) [see Roe99, p.61]. The

plan is to find ε̃ and ε̃0 such that the following diagram commutes:

S
∼

ε\ε0
��

Cl(TM)⊗ C κ // End(∆)

ε̃\ε̃0
��

S
∼

Cl(TM)⊗ C κ // End(∆)

(10)

Then we can do the splitting into the canonical and anticanonically graded parts of S for

End(∆) instead for S: Define ε̃(A) := f ◦ A ◦ f and ε̃0(A) := f ◦ A for A ∈ End(∆) where

f := in/2κ(e1 · ... · en ⊗ 1)∈ End(∆) is the involution which eigenspaces define the positive

and negative half-spin representations ∆± [see Roe99, p.62] [see FNS00, p.22]. The diagram

(10) commutes for this ε̃ and ε̃0 because for an homogeneous element s ∈
∧j

T ∗M ⊗ C we

have:

ε̃(κ(s)) = f ◦ κ(s) ◦ f = (−1)n/2κ(e1 · ... · en · s · e1 · ... · en︸ ︷︷ ︸
=(−1)je1·...·en·s

) = κ((−1)js) = κ(ε(s))

ε̃0(κ(s)) = f ◦ κ(s) = κ(in/2e1 · ... · en · s) = κ(ε0(s))

Based on the definition of ∆± as eigenspaces of f, the splitting into the canonical and anti-

canonically graded parts End(∆) = Hom(∆+,∆)⊕ Hom(∆−,∆) follows (here we interpret

Hom(∆±,∆) as a subspace of End(∆) under use of the trivial extension ∆∓ 7→ 0 ∈ ∆):

• ∀A ∈ Hom(∆+,∆) : ε̃(A) = f ◦A ◦ f = f ◦A = ε0(A)

• ∀A ∈ Hom(∆−,∆) : ε̃(A) = f ◦A ◦ f = −(f ◦A) = −ε0(A)

Now the Claim is shown because of the following natural identifications:

• Sc ∼= Hom(∆+,∆) ∼= ∆∗+ ⊗∆ ∼= ∆⊗∆+

• Sa ∼= Hom(∆−,∆) ∼= ∆∗− ⊗∆ ∼= ∆⊗∆−

With the previous result we can write out the super Chern character explicitly:

chs(S/∆)
Def.
=
(9)

ch
(
(∆⊗∆+)/∆

)
− ch

(
(∆⊗∆−)/∆

)
= chs(∆) = e(TM) (11)

The last step holds because of the calculations in exercise 4.34 [see Roe99, p.69]. The Chern-
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Gauss-Bonnet theorem follows:∑
j

(−1)j dim(Hj(M ;R))
(8)
= Ind(D)

Corollary 2
=

∫
M

Â(TM) ∧ chs(S/∆)
(11)
=

∫
M

e(TM)

Together with the previous theorem the equation in Corollary 2 takes, for our special case

M = S2, the form:

χ(S2) :=
∑
i

(−1)idim(Hi(S2,R)) =

∫
S2

e(TS2) (12)

We will calculate both sides separately:

Figure 1: Triangulation of

the 2-sphere [Goo].

Left side of eq. (12): Using the geometric definition of the Euler char-

acteristic, the triangulation shown in Figure 1 gives us:

χ(S2) = V − E + F = 6− 12 + 8 = 2

Right side of eq. (12): The Euler class of the real oriented vector

bundle TS2 is equal to the first Chern class of the line bundle

TCS
2 [Question 2.36(v) Roe99]. Here we identify any real two

dimensional fiber of TS2 with a one dimensional complex vector

space (the orientation must be preserved) and glue it together to a

complex line bundle denoted as TCS
2. The plan is to calculate the curvature matrix Ω with

values in the 2-forms for a connection on TCS
2 (Ω is a 1x1 matrix because TCS

2 is a line

bundle) and obtain the first Chern class via c1(TCS
2) =

[ −1
2πi tr(Ω)

]
[Definition 2.21 Roe99].

We use spherical coordinates (θ, ϕ) on S2 and choose the Levi-Civita connection ∇ on TS2.

Then the metric and the connection takes the following form:

g = dθ ⊗ dθ + sin2(θ)dϕ⊗ dϕ;

∇∂θ∂θ = 0; ∇∂ϕ∂θ =
cos(θ)

sin(θ)
∂ϕ; ∇∂ϕ∂ϕ = sin(θ) cos(θ)∂θ

(13)

For any point p ∈ S2 we identify ∂θ|p = 1 and 1
sin(θ)∂ϕ|p = i such that we can interpret ∂θ as

a smooth section of TCS
2 which is at every point in the domain of the spherical coordinates

linear independent. A short calculation gives for two vector fields X = Xϕ∂ϕ +Xθ∂θ, Y =

Y ϕ∂ϕ + Y θ∂θ ∈ Γ(TS2) under use of the relations in equation (13) and ∂ϕ = i sin(θ)∂θ

R(X,Y )∂θ =
(
XϕY θ −XθY ϕ

)
∂ϕ = i

(
XϕY θ sin(θ)−XθY ϕ sin(θ)

)
∂θ (14)

such that the curvature matrix with values in the 2-forms looks like Ω = i sin(θ)dϕ ∧ dθ.
Now we can puzzle everything together and calculate the integral over the Euler class:∫

S2

e(TS2) =

∫
S2

c1(TCS
2) =

−1

2πi

∫
S2

tr(Ω) =
1

2πi

∫
S2

i sin(θ)dθ ∧ dϕ =
1

2π
4π = 2

We have just calculated the Euler class on the domain of the spherical coordinates picked in

the beginning. But there is only one point missing, who doesn’t play a role in the calculation

of the integral.
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Both sides of equation (12) gives the same result and the Chern-Gauss-Bonnet theorem (which is

an application of the Atiyah-Singer index theorem) is verified for this example.
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